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SOFTWARE EVENTS
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SOME TYPES OF EVENTS

message arrival

work is completed
work is available

something terrible happened



AN EXAMPLE: LEGION




ASYNCHRONOUS EVENTS

the receiving side Is not blocked

other things can run



WEWANT FAST EVENTS

first

moment of ¥ instruction of

event handling
code

event trigger

notification latency

we want to minimize this
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WHAIL'S THE LOWER LIMIT?

light!



what we want: SoL1

what we actually get witn
existing software events: SoLTT

Tspeed of light

TTs**t out of luck




OUTLINE

software abstractions for asynchronous events

hardware capabillities
event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware
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CONDITION VARIABLES

pthread_cond_signal()

pthr*ead_cond_wai\t()/ @ running

cond.
var scheduling delay

queue

’ CPU ready queue



BROADCAST

pthread cond broadcast()

D

cond.

\'L:18

thread
thread

CPUO CPU |

ready queue ready queue
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IMMEDIATELY VISIBLE ISSUES

we’re at the behest of the scheduler
broadcast is linear in number of waiters

we can’t tell scheduler to initiate a
“fast” wakeup



OUTLINE

software abstractions for asynchronous events

hardware capabilities

event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware
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WHAIT CANWE DO IN
HARDWARE!?

DT

inter-processor interrupts (IPls)

"" ".' handler

first instruction executed on receiving end/ code
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CDF

IPIS ARE FAST
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OUTLINE

software abstractions for asynchronous events

hardware capabillities

event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware
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MEASURING EVENT WAKEUP
LATENCY

read start time()

event o S
. o] INstruction
trigger

core 0O core i

read end time()



MEASURING EVENT
BROADCAST LATENCY
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event
trigger

first

mstruction
of handler
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instruction

instruction
of handler of handler
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EXISTING SOFTWARE EVENTS
ARE SLOW
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BROADCASTS ARE ALSO
[ ERRIBLE
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SYNCHRONY

for broadcasts, we want events to be delivered
to all cores at the same time

useful for, e.g. BSP apps with events

measure the deviation of wakeup time across
cores in a broadcast
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SYNCHRONY

70x difference between hardware IPls and
software mechanisms

hardly any predictability!
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OUTLINE

software abstractions for asynchronous events
hardware capabillities

event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware
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NAUTILUS

User Mode _CNothin

Kernel Mode

Parallel Application

Kernel

2O Parallel Runtime
Events

Aerokernel

[ Hale, Dinda HPDC ’| 5]
[ Hale, Dinda VEE ’1 6]
[ Hale, Hetland, Dinda FRIDAY]
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RETAINING FAMILIAR
INTERFACES

use a lightweight, kernel-mode framework
(like Nautilus) to eliminate overheads

maintain userspace interfaces (e.g. condition
variable wait,signal,broadcast etc.)

if we build our kernel from scratch,
how fast can we get!?

28



-MO HAS 2 CO

VARIA

L

M

- M

L

-

PATIBLE CONDITION

-NTATIONS

lightweight condition variables

leverage IPl access to “kick’ the
scheduler
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EXISTING SOFTWARE EVENTS
ARE SLOW
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NEMO SPEEDS THINGS UP
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NEMO SPEEDS THINGS UP
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BROADCASTS ARE ALSO
[ ERRIBLE
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NEMO BRINGS US CLOSER TO
Pl BROADCAS T LATENCY
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SYNCHRONY

we can do 2x better than user-space
mechanisms
(with compatible interfaces)
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OUTLINE

software abstractions for asynchronous events
hardware capabillities
event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware
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WHAI IFWE GIVE UP THE
FAMILIAR INTERFACE!?

modify condition variable semantics

we don’t necessarily care which context (thread)
receives the event, as long as it’s handled at a
particular core

not appropriate for all situations
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ACTIVE MESSAGES

handler le msg()

message

——————————© memory

claim: better fit than, e.g. cond vars, for many event-based

schemes
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we want to use IPls as an
active message substrate

problem: IPls don’t have a payload!
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allocate several event IDs

when core recelves Iinterrupt,
lookup the event ID in a table
indexed on core |ID

Action Lookup Table

event
ID 3

core 0 core | core n-|

nemo notify event(core=1, event=3)
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event |D corresponds to an "action” (a handler)

Action Descriptor lable

event ID 3 event D O

Oxdeadbeef

handle event()
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NEMO WAKEUPS HAVE
CONSTANT OFFSET FROM [PIS

~100 cycles
—




BROADCAST LATENCY ALSO
ON PAR\/\/\TI—I PIS
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NEMO ACHIEVES TIGHT
SYNCHRONY

< 50 cycles variation in
broadcast wakeups between
cores



SUMMARY

T you want asynch. event delivery close to hardware
latency. ..

existing mechanisms are pretty terrible
SOME WAYS TO FIX IT:

throw out general purpose OS abstractions
(e.g. user/kernel boundary)

throw out typical event abstractions

use the hardware directly!
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TIGHT SYNCHRONY FOR IPIS,
NOT FOR SOFTWARE EVENTS
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CDF

NEMO GETS US CLOSER
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NEMO ACHIEVES TIGHT
SYNCHRONY

~50 cycles

00000



HOW FAST CAN A
NOTIFICATION BE IN H/WW?

poll!

while (!stuff happened)

cache memory| cache

cache invalidation (10s of cycles)
|

tffhpp ned




CDF

Unicast IPl vs memory polling 52
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WHY THE GAP?



we’re bounded by interrupt handling logic in
the hardware

destination handling

APIC write \ | [Pl cost breakdown
time on wire

hote: these are indirectly measured
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we used to have a problem like this with
INT8O0 syscalls...

solution: introduce a new
instruction, skip a lot of the
interrupt handling logic
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CDF
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